tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

整数論

6xx + xy + yy の形で表せる素数

昨日の記事の続きで「二平方定理」について調べている中で,興味深い定理を発見しました。今日は「どんな形をした素数が, の形に書けるか」についてのお話をご紹介します。

続・二平方定理 (オイラーの 6n+1 定理)

前回の記事: 平方剰余の第一補充則から二平方定理を導く - tsujimotterのノートブック 昨日書いた「フェルマーの二平方定理」の話ですが,定理をもっと一般化できることに気づきました。ワクワクしながらこの記事を書いています。 昨日は「 型の素数は の形…

平方剰余の第一補充則から二平方定理を導く

久しぶりに整数論の調べものをしていたら,思った以上に捗って理解が深まったので,さっそく記事にしてみました。約一年ぶりに「フェルマーの二平方定理」の記事の続きをお話ししたいと思います。 フェルマーの二平方定理 - tsujimotterのノートブック フェ…

ラマヌジャンの L 関数 と 二次のオイラー積

このところ暗号系の記事が続きましたが、今回は暗号とはまったくありません。この記事では、次のオイラー積を求めたいと思います。 左辺の級数は「ラマヌジャンの L関数*1」と呼ばれています。ラマヌジャンとはもちろん、インドが産んだ奇才、シュリニバーサ…

一次不定方程式と油分け算

またまた RSA 暗号の関連記事です。記事の中で「一次不定方程式」という概念が登場しましたので、その補足をしたいと思います。 一次不定方程式の整数解: を互いに素な整数としたとき,以下の方程式を満たすような整数解 が存在する. この一次不定方程式の…

オイラー関数についての補足

一昨日の RSA 暗号の記事で、オイラー関数 という関数が登場しました。暗号理論に限らず、整数論においてとても大事な関数となっていますので、ちょっと補足したいなと思いました。特に、関数の引数が「2つの素数の積」となる場合の説明をまったくしていな…

RSA暗号からの脱出

昨日、せっかく RSA の記事を書いたので、自分でも暗号を作ってみたくなりました。 というわけで、今日は RSA 暗号の問題です。単なる暗号では面白くないので、最近流行の「脱出ゲーム」っぽいテイストにしてみました。「四角に入る文字列」がわかった方は、…

RSA 暗号がようやく分かった気がしたのでまとめてみる

「RSA 暗号」を知ったのは私が大学の3年生の頃だったかと思います。学科の必修として「危機管理工学」という名の講義があって、そこで暗号理論を学んだのです。当時は、たいして数学を勉強していなかったこともあって、単位は習得したものの「なんだかよく…

美しい反例

若い数学者が、壇上へと静かに足を運んでいく。 「だれだあいつは」という声が、どこからともなく聞こえた気がした。 彼は壇上へ上がると、一呼吸置いて自分のノートを開いた。まだ一言も発していない。 彼は自分の名前さえ名乗らないままに、ゆっくりと、し…

ディリクレの算術級数定理の証明(4n+1型の場合)

これらの数は で割って 余る素数です。このような形の素数のことを「 型の素数」と呼びますが、果たしてそのような素数は無限に存在するのでしょうか。この問いに答えるのが「ディリクレの算術級数定理」です。 ディリクレの算術級数定理: を正の整数とし,…

独習ノート「素数と2次体の整数論」#3.5:単項イデアルの性質

《独習ノート:「素数と2次体の整数論」シリーズ》の補足回です。今回のテーマは「単項イデアルの性質」について。該当箇所は、第1章の 問題 1.12 です。本当は飛ばそうかと思ったのですが、あとのことも考えると書いておいた方が良さそうだと、思い直しま…

ディオファントスの数遊び

「ディオファントスの一生」って知っていますか? ディオファントスという古代の数学者の墓石に、彼の一生を示した「謎めいた文章」が書かれている、という話なのですが、これがよく読むと数学の問題になっているのです。NHK Eテレの2355という番組で、これ…

独習ノート「素数と2次体の整数論」#3:Z のイデアル (2/2)

今日は「 のイデアルは、常に単項イデアルである」を証明します。その過程で「割り算の原理」という非常に重要な定理が登場します。該当箇所は前回に引き続き「1.3 のイデアル」です。 今回の文章は、ちょっと長いかもしれません。なかなかすんなりとは行か…

独習ノート「素数と2次体の整数論」#2:Z のイデアル (1/2)

今回は「イデアル」の導入と定義について。教科書の該当箇所は「1.3 のイデアル」です。内容が濃いので、2回に分けてお話します。

独習ノート「素数と2次体の整数論」#1.5:集合の包含関係(補足)

今回は、《独習ノート:「素数と2次体の整数論」シリーズ》の補足回です。今回の内容は、教科書に該当する箇所はありません。明日以降の記事で「集合の包含関係」についての性質を使うので、この記事で先に触れておきたいと思います。

独習ノート「素数と2次体の整数論」#1:約数と倍数

前回からはじまった独習ノートシリーズです。テーマは「整数論」。今日は整数論で最も基本的な「1.2 約数と倍数」について学んでいきたいと思います。

独習ノート「素数と2次体の整数論」#0:動機

教科書を1つ決めて、それに沿って tsujimotter が勉強した過程をまとめていく連載シリーズです。 本シリーズの教科書はこちら。素数と2次体の整数論 (数学のかんどころ 15)作者: 青木昇,飯高茂,中村滋,岡部恒治,桑田孝泰出版社/メーカー: 共立出版発売日: 2…

セクシー素数

この記事は 明日話したくなる数学豆知識アドベントカレンダー の 28 日目(!?)の記事です。( 27 日目:対数表に「素数」の表がついている?) アドベントカレンダーまさかの限界突破に、なんと遠藤 逸ノ城さんが続いてくれました!まさか、彼も対数表を…

おすすめ数学小説:ペトロス伯父と「ゴールドバッハの予想」

この記事は 明日話したくなる数学豆知識アドベントカレンダー の 13 日目の記事です。( 12 日目:数列の和の算数) 寒くなってきましたね。休日であっても外に出るのが億劫になりそうです。そんなときは、家の中で暖かくして読書などいかがですか。数学のよ…

11/11はレピュニットの日

どうも~、数のエンターテイナー見習いの tsujimotter です。今日は11/11ですね。 毎年、この日が来ると、某チョコレート菓子の話がたくさん出てきますが、11/11は「レピュニットの日」 ですよね。私、tsujimotterが勝手に決めました。笑ということで、今日…

自由研究:4 乗数と 29 の興味深い関係

お久しぶりです。日曜数学者の tsujimotter です。 みなさん数学してますか?tsujimotterの近況ですが、最近は Wikipedia で 数の性質を調べるのにはまっております。WikipediaのURL http://ja.wikipedia.org/wiki/ の末尾に半角英数で「好きな数」を加える…

循環小数(4): 平方剰余の相互法則

循環小数問題 1/12377の小数点以下6193桁目は何か?(問題編) - tsujimotterのノートブック 1/12377の小数点以下6193桁目は何か?(解答編) - tsujimotterのノートブック 解説編 第1回:循環小数(1): フェルマーの小定理 - tsujimotterのノートブック 第…

循環小数(3): Midyの定理(後編)

循環小数問題 1/12377の小数点以下6193桁目は何か?(問題編) - tsujimotterのノートブック 1/12377の小数点以下6193桁目は何か?(解答編) - tsujimotterのノートブック 解説編 第1回:循環小数(1): フェルマーの小定理 - tsujimotterのノートブック 第…

循環小数(2): Midyの定理(前編)

循環小数問題 1/12377の小数点以下6193桁目は何か?(問題編) - tsujimotterのノートブック 1/12377の小数点以下6193桁目は何か?(解答編) - tsujimotterのノートブック 解説編 第1回:循環小数(1): フェルマーの小定理 - tsujimotterのノートブック 第…

循環小数(1): フェルマーの小定理

循環小数問題 1/12377の小数点以下6193桁目は何か?(問題編) - tsujimotterのノートブック 1/12377の小数点以下6193桁目は何か?(解答編) - tsujimotterのノートブック 解説編 第1回:循環小数(1): フェルマーの小定理 - tsujimotterのノートブック 第…

1/12377の小数点以下6193桁目は何か?(解答編)

前回の記事: 1/12377の小数点以下6193桁目は何か?(問題編) - tsujimotterのノートブック 問題はこれでした。続き。「1/12377の小数点以下第6193桁目の数は何になるか?」は数年前にオープンキャンパスで出した問題。ヒント無しですぐに答えられる人はす…

1/12377の小数点以下6193桁目は何か?(問題編)

twitterで面白い問題を教えてもらったので、紹介します。数学好きの人はぜひチャレンジしてみてください。続き。「1/12377の小数点以下第6193桁目の数は何になるか?」は数年前にオープンキャンパスで出した問題。ヒント無しですぐに答えられる人はすごいと…

3n+1型の素数とか

今日は3月31日ということで、331にまつわる小ネタを。 はじめに 4n+1の形で表せる素数はすべて平方数の和でただ一通りに表せる。 逆に平方数の和で表せる奇素数はすべて4n+1型である。 というのは、この記事で以前お話したことでした。 フェルマーの二平方定…

自由研究:ラマヌジャン定数のナゾ(2)

注意 この記事は数字が大好きなだけの数学素人 tsujimotter の自由研究です。内容の正確性は一切保証しません。 前回の記事の続きです。企画倒れにならなくてよかった・・・。 自由研究:ラマヌジャン定数のナゾ(1) - tsujimotterのノートブック 疑問の1つ…

自由研究:ラマヌジャン定数のナゾ(1)

注意 この記事は数学に関しては素人(NOT professional)の tsujimotter が興味を持った数学について、調べて理解を深めていく過程をまとめたものです。「らしい」「とのこと」などの怪しい言葉が入っているように、この記事の内容の正確性は一切保証しませ…