tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

整数論

mod mのべき乗余が何通りの値を取るかという話

1つ前の記事に関連して 「 がどんな値をとるのか」 という問題が気になりました。 tsujimotter.hatenablog.com上の記事では のとき のとき となる、つまり の全ての値を取ることを示しました。鯵坂もっちょさんの可視化の方法を用いるならば、右肩上がりの…

「互いに素でない場合」のオイラーの定理

を正の整数としたとき、 を と互いに素な任意の整数としてが成り立つことが知られています。 はオイラーのトーシェント関数といって、この合同式はオイラーの定理として知られています。 これは素数を使った有名な暗号の一つ「RSA暗号」の理論的背景に使われ…

素数生成多項式と虚2次体の類数 (2)

昨日は、オイラーの素数生成多項式に関して「私の発見」を紹介させていただきました。 tsujimotter.hatenablog.com執筆時は、この研究の先行研究にあたるものを発見できず、「先行研究はあるかわからないが独自にこんな発見をした」というスタンスを取ってい…

(独自研究)素数生成多項式と虚2次体の類数

今回の記事は、素数がたくさん登場する多項式に関連する話題です。今回は私がこの式について考えているうちに、思いついて実施してみた独自研究について紹介したいと思います。どこかの本に書いてある話ではないので、誤りを含んでいる可能性も大いにあるか…

「数体の素元星座定理」に関するプレプリントについて

2021年 に入ってすぐに、とんでもないニュースが飛び込んできました。もちろん、数学のニュースです。東北大学の研究チームによる論文のプレプリントがarXivで公開されました。タイトルは "Constellations in prime elements of number fields" で、こちらの…

2021は合同数

ちょっと早いですが明けましておめでとうございます!2021年も良い一年になりますように!ところで、毎年私は 今年の西暦にまつわる数の性質 について調べているのですが、2021 についても面白いものを見つけたので紹介します。それは 「2021は合同数」 であ…

局所ゼータ関数(ゼータ積分)

Zeta Advent Calendar 2020 の2日目の記事です。 今日の記事は 「ゼータ積分」 というものを扱ってみたいと思います。きっかけは、私が主催したマスパーティというイベントです。その中で行われたζWalkerさんの発表の中で「ゼータ積分」というワードが現れま…

類体論入門

日曜数学 Advent Calendar 2020 の1日目の記事です。 「類体論」という名前を聞いたことがあるでしょうか?類体論は、高木貞治という日本の数学者が提唱した理論です。実は今年2020年は類体論が提唱されてからちょうど 100周年 だそうです。『類体論における…

デカルトの見つけた奇数の完全数(?)

今日は11/28で日付は 28。28は皆さんご存知の 完全数 ですね。というわけで、今日は いい完全数の日 です!せっかくなので、完全数にまつわる面白い話をご紹介したいと思います!

3は合同数ではない

前回は、楕円曲線の有理点のランクを計算する方法を勉強しました。例をいくつか計算しているうちに、これはさまざまな合同数問題に応用できそうだということに気づいて、計算してみようと思ったのが今回の記事になります。そんなわけで、今回は 3が合同数で…

楕円曲線の有理点のランクを計算しよう!(2-descentの具体的計算)

楕円曲線には、有理点がの4点しか存在しないことが知られています。特に、無限位数の点は存在しません。 今日考えたいのは 「無限位数の点が存在しないことを本当に証明できるのか?」 という問題です。実際、それは可能であるというのが、今日伝えたいこと…

有限体上の楕円曲線とヤコブスタール和

前回の記事から引き続き、代数曲線の での解の個数 について思いを馳せたいと思います。前回の記事はこちら: tsujimotter.hatenablog.comなお今回の内容は、前回の記事の内容をまったく読んでいなくても理解できる内容となっています。 今回は、 を素数とし…

「tsujimotterの29予想」の初等的証明

今日のテーマはこちらです:定理1(tsujimotterの29予想) を任意の素数とする。このとき、次が成り立つ: が なる整数解 を持たない 合同式に解がないのは なぜか と のときだけである という不思議な現象についての予想です。 この予想に関する経緯を少し…

任意の素数はレピュニットの素因数に現れる(2, 5を除く)あとダイヤル数

Twitterって本当に面白いなと思うのですが、人々のいろんな発見が流れてくるのです。私が最近面白いと思ったのは次のツイートです。「2、5を除く全ての素数は11、111、1111、…の素因数として“周期的に”現れる」ってことに気が付いて、証明できた気がするんだ…

分数の足し算で「約分」が発生する条件(3)

最近、頭の中が「分数の足し算」でいっぱいなtsujimotterです。こんにちは。前回・前々回の記事から引き続き、分数の足し算の話題です。過去記事はこちらをご覧ください: tsujimotter.hatenablog.com tsujimotter.hatenablog.com さて、これまで分数の足し…

分数の足し算で「約分」が発生する条件(2)

早速ですが、昨日の記事の続きです。 tsujimotter.hatenablog.com 前回の記事では、分数の足し算の計算で約分が発生する条件について考えました。特に、結果の分母・分子が素数 で約分されるならば、 が で割り切れる回数 はであることを示しました。 今回は…

分数の足し算で「約分」が発生する条件

こんにちは! 日曜数学者のtsujimotterです! 今日は 分数の足し算 について考えたいと思います。きっかけは学生のプログラミング課題でした。tsujimotterは大学でPythonとC言語を教えているのですが、ある日の課題で「分数の足し算を計算する関数を作れ」と…

訂正記事:前回の証明は第Ⅳ証明ではなかった

ガウス和について勉強していくうちに、前回紹介した「平方剰余の相互法則の証明」の記事の内容に関して、誤解があることを発見しました。今回の記事は、その誤解についての 訂正記事 です。私が誤解に気づいたきっかけは、以下のPDF記事でした。 アンドレ・…

平方剰余の相互法則の証明(ガウス和を用いた方法)

3日連続ガウス和シリーズ、最終日の今回のテーマは 「平方剰余の相互法則」 です。平方剰余の相互法則は、整数論を勉強する人の多くが憧れる定理の一つで、いよいよここまできたかという感じがします。 なお、ガウス和シリーズの記事は、以下のタグで見るこ…

ABC予想のよくある間違い

望月新一先生の「宇宙際タイヒミュラー理論」に関する論文が、論文誌に採録されることが決まったというニュースが飛び込んできました。 mainichi.jp論文の原稿は8年も前から発表されており、その内容の壮大さから、数学好きの間で度々話題になっていました…

ガウス和の性質についての証明

前回の記事で、ガウス和 についての面白い定理を紹介しました。せっかくなので、ガウス和シリーズ と題して、3日連続でガウス和にまつわるお話を紹介したいと思います。このシリーズの全記事は「ガウス和」のタグで閲覧できるようにします。 tsujimotter.ha…

√pの作り方(ガウス和)

一昨日にこんなツイートをしてみたら、思った以上に多くの方に面白がってもらえました。せっかくなので、この記事を通して「種明かし(?)」をしたいと思います。√pの作り方 pic.twitter.com/qy2gzay6EW— tsujimotter (@tsujimotter) 2020年3月31日 今回は…

「ユークリッド整域」ならば「単項イデアル整域」の証明

最近、「素数と2次体の整数論」という本の読書会をはじめました。素数と2次体の整数論 (数学のかんどころ 15)作者:青木 昇発売日: 2012/12/21メディア: 単行本主に数学デーというイベントの中で毎週1、2回程度開催して、少人数で濃い勉強をしています。「…

円周率の「一風変わった」近似式

今日は 3/14 、すなわち 「円周率の日」 ということで、円周率の一風変わった近似式を紹介したいと思います。今回紹介したい式はこちらです:ここで、 は自然対数です。 「なんじゃこりゃ」というような式ですが、実際に計算してみるとその精度の高さに驚き…

任意の自然数は高々53個の4乗数の和で表せる

昨日紹介した「モジュラー形式の本」にまたまた面白い話が載っていたので紹介したいと思います。1足す1から現代数論へ: モジュラー形式への誘い作者:アッシュ,アブナー,グロス,ロバート発売日: 2019/07/27メディア: 単行本 ウェアリングの問題 このブログで…

#素数大富豪札幌杯 で出された合成数出しカマトトについて

先日、素数大富豪の大会が札幌で開催されました。その名も「札幌杯」。一時期は開催が危ぶまれましたが、なんとか無事開催されることになりました。少し長い動画ですが、YouTubeで大会の様子を見ることができます。 www.youtube.com札幌杯では 「数学的に面…

ケンタッキーのサイドメニュー問題と重複組合せ

去年の年末、ケンタッキーに行ったときのことです。オリジナルチキン4ピースパックを注文することにしました。 www.kfc.co.jpこのパックでは、以下の4種のサイドメニューのうち1個を選ぶことができます。 ・ポテトS ・クリスピー ・ビスケット ・コールスロ…

フェルマー数を使った素数の無限性の証明

今日は数論の話をしましょう。今回の主役は フェルマー数 です。フェルマー数とは、0以上の整数 に対しての形をした数のことです。 が自然に現れる問題としては 正多角形の作図 がよく知られています。 を素数として、正 角形が作図可能である必要十分条件が…

#2020になる数式 (マニアック編):判別式-2020の2次形式

2020年最初に作ったアプリが、おかげさまでたくさんの方にみてもらえているようです。「2020」という数は、・2つの平方数の和・3つの平方数の和・連続する4つの素数の平方数の和・10連続偶数の平方和でそれぞれ表せる数らしいので、その性質を可視化するペー…

#2020になる数式 について考えてみた

明けましておめでとうございます!いよいよ 2020年 ですね。2020年といえば、だいぶ前から話題に上がっていたオリンピックイヤーがいよいよやってきたという感じですが、今年はどんな一年になるのでしょうか。良い年にしていきたいですね。2020年になったと…