読者です 読者をやめる 読者になる 読者になる

tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

オイラーの素数生成多項式の秘密

今日はオイラーが発見した, という多項式についてお話したいと思います。 ある特別な に対して,多項式の に整数 を入れていくと,「素数」が次から次へとたくさん出てくるのです。まるで 「魔法の多項式」 です。これだけでも十分面白いのですが,なんとこ…

7は合同数

1つ前の記事で「合同数」の話が出たので,合同数についてのもう一つの話題を。 復習しておくと,合同数とは「すべての辺の長さが有理数であるような直角三角形の面積になる数」のことです。図で表すとわかりやすいですね。

オイラーの五角数定理 と ヤコビの三重積

小学校の頃に算数で「おはじき」を並べる授業があったのを覚えているでしょうか。みなさんきっとやったことがあると思いますが,おはじきを正三角形の形に並べることができますね。最初は1個,次は3個,その次は6個,そして10個。10個では「ボウリン…

xx + 27yy 型の素数 と オイラーの五角数定理

これまでこのブログではという二次形式で表すことのできる素数に想いを巡らせてきました。 のときには,それぞれの二次形式で表すことができる素数の必要十分条件が完全に分かっています。このブログでも数回にわたって解説してきました。 一般に,「多くの…

続・二平方定理 (オイラーの 6n+1 定理)

前回の記事: 平方剰余の第一補充則から二平方定理を導く - tsujimotterのノートブック 昨日書いた「フェルマーの二平方定理」の話ですが,定理をもっと一般化できることに気づきました。ワクワクしながらこの記事を書いています。 昨日は「 型の素数は の形…

美しい反例

若い数学者が、壇上へと静かに足を運んでいく。 「だれだあいつは」という声が、どこからともなく聞こえた気がした。 彼は壇上へ上がると、一呼吸置いて自分のノートを開いた。まだ一言も発していない。 彼は自分の名前さえ名乗らないままに、ゆっくりと、し…

自由研究:4 乗数と 29 の興味深い関係

お久しぶりです。日曜数学者の tsujimotter です。 みなさん数学してますか?tsujimotterの近況ですが、最近は Wikipedia で 数の性質を調べるのにはまっております。WikipediaのURL http://ja.wikipedia.org/wiki/ の末尾に半角英数で「好きな数」を加える…

素数が無数にあることのオイラー積を使った証明

《関連記事》 ゼータ関数のオイラー積 - tsujimotterのノートブック はるか昔、ユークリッドによって「素数は無数に存在する」ことは証明されていました。ここでは、ゼータ関数のオイラー積という比較的近代的な手法を使って、上記の定理を証明したいと思い…

ゼータ関数のオイラー積

図:レオンハルト・オイラー(1707 - 1783) オイラー積とは レオンハルト・オイラーといえば世界一美しい公式と呼ばれる「オイラーの公式」が有名ですが、私が一番好きなのは次のオイラー積と呼ばれる公式です。 オイラー積(完全版) ただし、右辺の積記号…