tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

色と対称性:銅錯体の色のしくみ(後編)

銅錯体が青いのはなぜか。その化学的な理由を突き止める記事 後編 です。今回はいよいよ 群論 が登場します! 「対称性」を使って色の仕組みがどのように理解できるのか!?前編の内容を前提に進めますので、ご覧になっていない方はまずはこちらをご覧くださ…

色と対称性:銅錯体の色のしくみ(前編)

今日考えたいのは 銅錯体 についてです。硫酸銅は2価の銅イオン と硫酸イオン のイオン結晶 です。これ自体は白い粉なのですが、水に溶けると 青色 に呈色します。飽和量以上の硫酸銅を加えると結晶が析出しますが、その結晶の色も綺麗な 青色 となります。…

植物の葉の色はなぜ緑色か?

夏です。木々の緑が鮮やかな季節がやってきました。 [tsujimotterの母校、北大にて撮影]植物の葉を眺めてると、私はいつもこんな疑問を思い浮かべます。どうして緑色なのだろうか? 色は、私たちは幼い頃から知っている身近な存在です。その一方で、とても神…

日曜化学(3):分子軌道法と可視化(Python/matplotlib)

いよいよ 分子軌道 を計算してみたいと思います。今回の記事の内容を理解するとエチレンやブタジエンやベンゼンなどの分子軌道が計算でき、それをPythonのプログラムで可視化できるようになります。これまで3回に渡って書いてきた「日曜化学シリーズ」の記…

日曜化学(2.5):メトロポリス・ヘイスティングス法を用いた電子雲の可視化(Python/matplotlib)

前回の記事で、水素原子の電子雲の可視化方法して、3つの方法を紹介しました。 tsujimotter.hatenablog.com 特に、方法2「散布図としてプロット」については、棄却サンプリング法を使った方法を紹介しました。今回、電子の確率分布を表す なる3次元の確率…

日曜化学(2):3次元空間における電子雲の計算(Python/matplotlib)

2日前に公開した量子力学に関する記事なのですが、たくさんの方に見ていただいて嬉しいです。Twitter上でもたくさんの嬉しいコメントをいただきました。 tsujimotter.hatenablog.com今日は続きとして、電子雲の可視化 をしたいと思います。 前回の記事では…

日曜化学:量子力学の基本と球面調和関数の可視化(Python/matplotlib)

最近、とある興味 *1 から量子力学(とりわけ量子化学)の勉強をしています。水素原子の電子の軌道を計算すると、s軌道とかp軌道とかd軌道とかの計算が載っていて、対応する図が教科書に載っていたりしますよね。こういうやつです: Wikipedia「球面調和関数…

位数6の群の分類

私がスタッフとして携わっている日曜数学会というイベントが、今月の20日に 6周年 を迎えます。めでたいですね。また、先日私の年齢も 歳になりまして、つまり というわけですね。ダブルでめでたい(?)。せっかくなので、何か にまつわる発表をしたいなと…

(a○+b)×(a△+b)=(a□+b)になるa,bの条件と中国剰余定理

数学ファンの鯵坂もっちょさんがツイートしていた問題が面白かったので、今日はその問題について考えてみたいと思います。あれ、もしかしてan+b(a,b,nは自然数、a,bは互いに素)型の数が積で閉じてるのってb=1のときだけか— 鯵坂もっちょ (@motcho_tw) 2021年…

フェルマー商

今日は整数論の面白概念の一つである フェルマー商 を紹介したいと思います。 まず、フェルマーの小定理という、合同式を考える上で大変有用な定理から話を始めます。定理(フェルマーの小定理) を で割り切れない任意の整数とする。このときが成り立つ。 …

自由研究:レピュニットが素数で何回割れるのか問題

一つ前の記事で「LTEの補題(指数持ち上げ補題)」という有名な補題について勉強しました。せっかくなので、この補題を何か他のネタにも使えないかと考えました。LTEの補題とは、こんな主張の補題でした:LTEの補題(指数持ち上げ補題) を奇数の素数とする…

線形合同法(擬似乱数生成法)の周期

世の中の現象の中には「ランダム」な現象が多々あります。たとえば、サイコロを振るのは分かりやすいランダムな現象の例です。他にも天気や地震、ギャンブルなども分かりやすいランダムな現象の例です。一方で、コンピュータの中で行われる計算は、一定のア…

テレビ番組 #ガリベンガーV に特別講師として出演しました(裏話など)

昨日5/15に放送された テレビ番組「ガリベンガーV」 という番組に出演させていただきました。TVerでも期間限定(5月22日(土) 23:40まで)で見ることができるので、ぜひご覧になってください! tver.jpなかなかない機会ですので、今日は収録の思い出を語った…

1/512の有限小数と冪零元

今日は5月12日なので 512 の日ですね! なので、2のべき乗で表せる数というわけです!嬉しいですね!(え、嬉しくないですか?) 楽しくなってきたので他にも面白い性質ないかなと、Wikipediaの「512」という項目を調べてみると、次のような性質を見つけまし…

テレビ出演&群論講座のお知らせ

いつもブログを読んでくださってありがとうございます!今日5月9日は私の誕生日なのですが、今年で36歳を迎えまして「平方数歳」になりました。おかげさまで今年も楽しく数学をできています!せっかくの36という年齢なので、36にまつわる何かをした…

モジュラー曲線(5):メイザーの定理

モジュラー曲線というのは、上半平面 を の合同部分群で割ったものとして定義されます。定義からは、明らかに複素解析的な対象に見えると思います。ところが、実はモジュラー曲線は数論的な対象でもあるのです。わかりやすい応用として、楕円曲線の位数有限…

正十二面体群とPSL(2,5):国際数学者会議PR企画の宣伝動画について

4年に一度、国際数学者会議(ICM: International Congress of Mathematicians)と呼ばれる大きな催しが行われます。フィールズ賞という、数学界の最高峰の賞が発表される会としても知られていますね。次回、2022年にはロシアのサンクトペテルブルグにてICM …

「π>3.05を凄すぎる方法で証明」を整数論的に考える

「」を示す問題が2003年の東大入試で出題されました。これは有名なのでみなさん良くご存じかと思いますが、一方で以下の動画のような解法はご存知でしょうか?www.youtube.comたいへん面白い解法なので、まずは一度ご覧いただきたいです。動画の解説もとても…

(自由研究)面白い二重根号と「単数」を使った外し方

高校数学で習った「二重根号」を覚えていますでしょうか。たとえばのように、根号の中に根号が入れ子になっている式を 二重根号 といいます。 上の二重根号は一見複雑な式に見えますが、実は次のように考えることで「ただの平方根」であることがわかります。…

(自由研究)49をmod 100でべき乗する話の一般化?

横山明日希さんのこちらのツイートの内容がとても興味深かったので、自分でもいろいろ一般化ができないかと考えてみました。4月9日です!「49」は、「奇数回かけると下二桁が49になる」というちょっと面白いを持っている数です! pic.twitter.com/eWair1rc0A…

箸袋で作った図形は正五角形か?

今日は 箸袋があるとつい作っちゃうこの図形 についての話です。細長い紙を用意して、上の図をイメージしながら折り曲げて「ぎゅっと」すると、きれいに正五角形が作れてしまいます。箸袋に限らず、お手元に紙テープなど「細長い帯状のもの」があれば簡単に…

保型形式(モジュラー形式)を勉強するとこんなにも楽しい(応用編)

今回は「保型形式(モジュラー形式)を勉強するとこんなにも楽しい」シリーズの 応用編 です!数学ガール等を読んで保型形式について知ったけど、さわりの部分だけでは物足りない、もっと保型形式のその先を勉強してみたい、そう思っていた「あなた」のため…

保型形式(モジュラー形式)を勉強するとこんなにも楽しい(導入編)

保型形式 という数学用語を聞いたことはあるでしょうか?数学好きの方の中には、フェルマーの最終定理の証明で楕円曲線と保型形式が役に立った、という話を聞いたことがある方もいるでしょう。 私が保型形式に出会ったのは、数学ガール「フェルマーの最終定…

ラマヌジャンの円周率公式

今年も3月14日、3.14の日がやってきました。3.14といえば、もちろん円周率の近似値ですね!円周率の近似値にちなんで、世界的には 円周率の日(英語圏だとPIの日)と呼ばれているそうです。 毎年、この日にブログに書きたいと思っていた(できずにいた)話が…

足し算の繰り上がりと群コホモロジー

以前「足し算の繰り上がりと群コホモロジーが関係している」という話が、Twitter上で話題になったことがありました。大元のツイートは、このツイートだったと思います。もうちょっと説明してくれといわれたので、しますと、Z/100Z は mod 100 の整数が足し算…

複素射影直線 ℙ¹ はコンパクトリーマン面

以下の記事でリーマン面の定義をまとめたことがありました。 tsujimotter.hatenablog.com これまでtsujimotterのブログではリーマン面の具体例を挙げたことがありませんでした。今日は、リーマン面(特にコンパクトリーマン面)の代表例である複素射影直線 …

ヒルベルトの第12問題(類体の構成問題)に進展があったらしい

センセーショナルな数学関連のニュースが飛び交っている昨今ですが、私にとって特に注目したい情報が入ってきました。それが ヒルベルトの第12問題 に関する進展です。 「総実体上のヒルベルトの第12問題を解いた」 というプレプリントが 3/4付 でarXivに投…

シリーズ「連分数とペル方程式」:エピローグ

3/1〜3/3の3日間で「連分数とペル方程式」のシリーズを行ってきたのですが、ご覧いただけましたでしょうか。tsujimotter.hatenablog.comtsujimotter.hatenablog.comtsujimotter.hatenablog.comそれなりにたくさんの人にみていただいて、嬉しい限りです。また…

マチンの公式と14個のペル方程式

今回の記事は「シリーズ:連分数とペル方程式」の3日目(最終日)の記事となっています。関連する記事は こちら からご覧いただけます。今日のテーマは、円周率の マチンの公式 です:この公式を使うと、円周率を高精度で計算できることが知られています。…

ペル方程式の連分数を用いた魔法の解法

今回の記事は「シリーズ:連分数とペル方程式」の2日目の記事となっています。関連する記事は こちら からご覧いただけます。今日はこんな問題を考えてみましょう。兵士たちが正方形に並んでいる。これを1軍団とする。その軍団が「61」ある。これに王様が一…