tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

数学

(987654321-1)/(123456789+1) がちょうど 8

最近、タイムラインでという話をよくみかけます。とても面白い現象ですね。 この問題については、id:egory_cat さんのブログにて、一般の 進法に対して証明が与えられています。 egory-cat.hatenablog.com ブログを拝見させていただきましたが、とても面白か…

群論的に干支を考える:十二支と十干はなぜ60年で戻るのか?

みなさん明けましておめでとうございます!年が明けたということで、みなさん今年の干支はご存知ですか? そうです壬寅(みずのえとら) ですね!! 「え、寅年でしょ?」と思った方。もちろんそれで正解なんですが、少しだけ話を聞いてください。実は、干支…

数学者の名前がついた素数

今回の記事では、数学者の名前がついた素数 について紹介したいと思います。名前を紹介するだけではなく、その由来となった数学的背景を簡単に紹介する記事になっています。素数は のように数がただ並んでいるだけに思われるかもしれません。しかしながら、2…

合成数のときのウィルソンの定理

突然ですが、100の階乗を101で割ったあまり を考えてみましょう。実際、計算しようと思うと大変ですがとなります。これを で割ったあまりは、ちょうど になります。ほかにも、 はであり、これを で割ったあまりは となります。 実はこれ、一般に成り立つ話な…

【あけおめ】2022を素因数分解しよう

あけましておめでとうございます!今年も楽しく日曜数学して、その様子を発信していきたいと思いますので、どうぞよろしくお願いします! ぜひ一緒に日曜数学しましょう! 2022年最初の記事では2022を素因数分解してみたいと思います! もちろん、素数チェッ…

カレンダーの上の素数 〜素数には毎年出会えるか?〜

日曜数学 Advent Calendar 2021 の最終日の記事です。 今日は日曜数学 Advent Calendar 2021 の 最終日 の記事です。そんなわけで、12月1日から始まった日曜数学アドベントカレンダーも、今日で終わりです!おかげさまで、なんと25日間すべての記事が埋まり…

電子計算機を使わないで発見された最大の素数 (2^148+1)/17(Ferrierの素数)

日曜数学 Advent Calendar 2021 の17日目の記事です。 今日はという数について考えたいと思います。この数、桁数が 44桁 もある巨大な数なのですが、なんと 素数 であることが分かっています。1951年に素数であることが証明されたのですが、面白いことに電子…

フィボナッチ数の逆数和がテータ関数を使って表せるという話

今日のテーマは フィボナッチ数 です。またかと思われるかもしれませんが、最近たしかにフィボナッチ数の話が多いですね。 今日の切り口は、フィボナッチ数の逆数和 です。特に、奇数番目のフィボナッチ数の逆数和について考えたいと思います。 式 の和を100…

小数展開にフィボナッチ数列 etc. が出てくる分数(後編)

日曜数学 Advent Calendar 2021 の2日目の記事です。 昨日の記事の 後編 として、小数展開に色々な数列が登場するような分数を生み出していきたいと思います! さてここで問題です!以下の4つの分数は、それぞれどんな数列が出てくる分数でしょうか? (答…

小数展開にフィボナッチ数列 etc. が出てくる分数(前編)

日曜数学 Advent Calendar 2021 の1日目の記事です。 アドベントカレンダーの季節がやってまいりました。今年も日曜数学アドベントカレンダーを立てまして、この記事はその1日目の記事となっています。 adventar.org日曜数学アドベントカレンダーは、今年で …

循環小数とアルティン予想

これまでtsujimotterのノートブックでは、循環小数についていろいろな話題を紹介してきました。今日はとっておきのトピックとしてアルティン予想 という 未解決問題 について紹介したいと思います。これまでの記事はこちらから見ることができます: tsujimot…

ガウス流・循環小数計算法

循環小数熱が再燃してきまして、いろいろ調べている中で面白い話を見つけました。かの有名な天才数学者ガウスは、こんなやり方で循環小数を計算していたそうです。今回の記事の出典は、参考文献に挙げた「近世数学史談」です。 たとえば、 という数を循環小…

(自由研究)1/p^k型循環小数のフルサイクル性について

今日はのような 「素数のべき乗分の1」の形の循環小数 について考えたいと思います。 実際、上記の小数を計算してみるととなり、 は 42桁、 は 294桁 と、たいへん長い循環節を持つことがわかります。これは後で見るように周囲の循環小数と比べてもかなり長…

「隣り合う立方数の差」はどのような素数で割り切れるか?

今日は久しぶりに数学の話題を。もりしーさん( @9973_prm )の以下のツイートの話が面白かったので、今日はこの問題について考えてみたいと思います。立方数と立方数の差って大体素数じゃん、って思ったけど5^3と6^3の差がまさかの91でわろた— もりしー@素…

動物の目は「微分」を活用している

「数学は役に立つのか?」「微分や積分は役に立つのか?」というのは、たびたびSNS上で目にする話題ですね。もちろん、人間社会において、さまざまな場面で数学や微分・積分が役に立っているのはみなさんよくご存知かと思います。今日紹介したいのは、人間が…

位数6の群の分類

私がスタッフとして携わっている日曜数学会というイベントが、今月の20日に 6周年 を迎えます。めでたいですね。また、先日私の年齢も 歳になりまして、つまり というわけですね。ダブルでめでたい(?)。せっかくなので、何か にまつわる発表をしたいなと…

(a○+b)×(a△+b)=(a□+b)になるa,bの条件と中国剰余定理

数学ファンの鯵坂もっちょさんがツイートしていた問題が面白かったので、今日はその問題について考えてみたいと思います。あれ、もしかしてan+b(a,b,nは自然数、a,bは互いに素)型の数が積で閉じてるのってb=1のときだけか— 鯵坂もっちょ (@motcho_tw) 2021年…

フェルマー商

今日は整数論の面白概念の一つである フェルマー商 を紹介したいと思います。 まず、フェルマーの小定理という、合同式を考える上で大変有用な定理から話を始めます。定理(フェルマーの小定理) を で割り切れない任意の整数とする。このときが成り立つ。 …

自由研究:レピュニットが素数で何回割れるのか問題

一つ前の記事で「LTEの補題(指数持ち上げ補題)」という有名な補題について勉強しました。せっかくなので、この補題を何か他のネタにも使えないかと考えました。LTEの補題とは、こんな主張の補題でした:LTEの補題(指数持ち上げ補題) を奇数の素数とする…

線形合同法(擬似乱数生成法)の周期

世の中の現象の中には「ランダム」な現象が多々あります。たとえば、サイコロを振るのは分かりやすいランダムな現象の例です。他にも天気や地震、ギャンブルなども分かりやすいランダムな現象の例です。一方で、コンピュータの中で行われる計算は、一定のア…

テレビ番組 #ガリベンガーV に特別講師として出演しました(裏話など)

昨日5/15に放送された テレビ番組「ガリベンガーV」 という番組に出演させていただきました。TVerでも期間限定(5月22日(土) 23:40まで)で見ることができるので、ぜひご覧になってください! tver.jpなかなかない機会ですので、今日は収録の思い出を語った…

1/512の有限小数と冪零元

今日は5月12日なので 512 の日ですね! なので、2のべき乗で表せる数というわけです!嬉しいですね!(え、嬉しくないですか?) 楽しくなってきたので他にも面白い性質ないかなと、Wikipediaの「512」という項目を調べてみると、次のような性質を見つけまし…

テレビ出演&群論講座のお知らせ

いつもブログを読んでくださってありがとうございます!今日5月9日は私の誕生日なのですが、今年で36歳を迎えまして「平方数歳」になりました。おかげさまで今年も楽しく数学をできています!せっかくの36という年齢なので、36にまつわる何かをした…

モジュラー曲線(5):メイザーの定理

モジュラー曲線というのは、上半平面 を の合同部分群で割ったものとして定義されます。定義からは、明らかに複素解析的な対象に見えると思います。ところが、実はモジュラー曲線は数論的な対象でもあるのです。わかりやすい応用として、楕円曲線の位数有限…

正十二面体群とPSL(2,5):国際数学者会議PR企画の宣伝動画について

4年に一度、国際数学者会議(ICM: International Congress of Mathematicians)と呼ばれる大きな催しが行われます。フィールズ賞という、数学界の最高峰の賞が発表される会としても知られていますね。次回、2022年にはロシアのサンクトペテルブルグにてICM …

「π>3.05を凄すぎる方法で証明」を整数論的に考える

「」を示す問題が2003年の東大入試で出題されました。これは有名なのでみなさん良くご存じかと思いますが、一方で以下の動画のような解法はご存知でしょうか?www.youtube.comたいへん面白い解法なので、まずは一度ご覧いただきたいです。動画の解説もとても…

(自由研究)面白い二重根号と「単数」を使った外し方

高校数学で習った「二重根号」を覚えていますでしょうか。たとえばのように、根号の中に根号が入れ子になっている式を 二重根号 といいます。 上の二重根号は一見複雑な式に見えますが、実は次のように考えることで「ただの平方根」であることがわかります。…

(自由研究)49をmod 100でべき乗する話の一般化?

横山明日希さんのこちらのツイートの内容がとても興味深かったので、自分でもいろいろ一般化ができないかと考えてみました。4月9日です!「49」は、「奇数回かけると下二桁が49になる」というちょっと面白いを持っている数です! pic.twitter.com/eWair1rc0A…

箸袋で作った図形は正五角形か?

今日は 箸袋があるとつい作っちゃうこの図形 についての話です。細長い紙を用意して、上の図をイメージしながら折り曲げて「ぎゅっと」すると、きれいに正五角形が作れてしまいます。箸袋に限らず、お手元に紙テープなど「細長い帯状のもの」があれば簡単に…

保型形式(モジュラー形式)を勉強するとこんなにも楽しい(応用編)

今回は「保型形式(モジュラー形式)を勉強するとこんなにも楽しい」シリーズの 応用編 です!数学ガール等を読んで保型形式について知ったけど、さわりの部分だけでは物足りない、もっと保型形式のその先を勉強してみたい、そう思っていた「あなた」のため…