tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

群コホモロジー・ガロアコホモロジー

足し算の繰り上がりと群コホモロジー

以前「足し算の繰り上がりと群コホモロジーが関係している」という話が、Twitter上で話題になったことがありました。大元のツイートは、このツイートだったと思います。もうちょっと説明してくれといわれたので、しますと、Z/100Z は mod 100 の整数が足し算…

四元数環と2-コサイクル

今日は 四元数環 について考えてみましょう。tsujimotterのノートブックでは初登場ですね。複素数体 は に虚数単位 を加えた体のことで、と書けます。 上の2次拡大体となっています。 に「ある演算規則」をもった という新しい数を加えてとしたものが四元数…

射影空間のK-有理点とヒルベルトの定理90

楕円曲線について本格的に勉強したいと思い、シルヴァーマンによる楕円曲線の本(タイトルは "The Arithmetic of Elliptic Curves"(通称:AEC))を読み始めました。The Arithmetic of Elliptic Curves (Graduate Texts in Mathematics)作者:Silverman, Jos…

群コホモロジーの定義と低次のコホモロジー

今回のテーマは 「群コホモロジー」 です。整数論や諸々を勉強していると、群コホモロジーという言葉をよく耳にします。調べてみると、とても難しそうな定義が並んでいてよくわからない。少し前までの私はそんな感じでした。一方で、難しい定義であっても、…

単項化定理と群コホモロジー

こんにちは。最近、群コホモロジーがマイブームのtsujimotterです。群コホモロジーといえば、以前の記事で群コホモロジーに関する定理「ヒルベルトの定理90」を使って、クンマー理論を導く話を書いたことがありました。 tsujimotter.hatenablog.com今回は ヒ…

セルマー群と2-descent法

を代数体として 上定義された楕円曲線の -有理点の群をモーデル・ヴェイユ群 といいます。モーデル・ヴェイユの定理によって、 が有限生成であることが示されていますが、その自由部分の生成元の個数、すなわちランクを決定するのは一筋縄ではありません。今…

ヒルベルトの定理90とクンマー理論

「ヒルベルトの定理90」という有名な定理があります。定理の名称は,ヒルベルトの有名な報文(Zahlbericht)での定理番号から今日はこの定理について紹介します。定理:ヒルベルトの定理90 を有限次ガロア拡大としたとき,が成り立つ。