2017-01-01から1年間の記事一覧
カタラン予想は、次のような有名な数論の予想です。を満たす正の整数 の組は に限る.「予想」とはいっても、実はもう既に解決されている問題です。カタラン予想は、2002年にミハイレスクという数学者によって解決されました。このことについては、以前のブ…
日曜数学 Advent Calendar 2017 の 25 日目(最終日!)の記事です。 数学大好き皆様こんにちは。今日は、日曜数学アドベンター2017 最終日です!2017 年最後ということで 2017 に関するお話です。 を のような奇数の素数を考えたとき「 なる整数 を具体的に…
突然ですが、眠くて眠くてしょうがないときってありますよね。スマホを開くことができれば、いろいろと目をさますコンテンツにアクセスすることができます。しかしながら、スマホを開くことができないときもありますよね*1。ここには紙とペンしかない。眠気…
この記事は 数学カフェ Advent Calendar 2017 の 17 日目の記事です。 今日は数学カフェアドベントカレンダーとして第13回 数学カフェ「素数!!」 の振り返り記事を書きたいと思います。イベントページ: 第13回数学カフェ「素数!!」|IT勉強会・セミナ…
日曜数学アドベントカレンダーの本日の記事は integers_blog さんによる「孙智伟による素数表現関数」です。 integers.hatenablog.com大変興味深いお話なので、ぜひ多くの人に読んでいただきたいです!
本日アップロードしたばかりのこちらの記事 tsujimotter.hatenablog.comではを計算する効率的な方法がわからない、と書いていました。先ほど nishimura さんという方に*1効率的な方法を教えていただきましたので、その方法を補足したいと思います。「オイラ…
この記事は 数学とコンピュータ Advent Calendar 2017 の 7 日目の記事です。 数学好きなITエンジニアの皆様こんにちは。日曜数学者を名乗り、趣味で数学を学んでいるtsujimotterと申します。本業では情報系の研究者をしていて、日頃プログラミングには親し…
「tsujimotterのノートブック」では、明日話しておきたい数学豆知識アドベントカレンダーという企画をやったことがあります。 adventar.orgこの話を覚えておけば、明日は職場で大人気だぜ(?)、という数学豆知識を紹介する企画でした。 今日は、その逆で、…
tsujimotterのノートブックでは,これまで2回にわたって,岩澤理論の3本柱のうちの2つ「岩澤類数公式」「p進L関数」を紹介してきました。今日は,3本柱の最後1つである「岩澤主予想」について紹介したいと思います。参考記事(こちらの記事の知識を前提…
この記事は 日曜数学 Advent Calendar 2017 の 1 日目の記事です。 アドベントカレンダーの季節が始まりましたね!2017年も「日曜数学アドベントカレンダー」は健在です! adventar.org嬉しいことに,既に投稿予定が全日埋まっております!これは嬉しいです…
ハッピーフィボナッチ!今日は 11/23 で,フィボナッチ数の最初の4項 1, 1, 2, 3 が並ぶ日です。そのため,11/23 はフィボナッチの日と呼ばれ,親しまれているようです。フィボナッチ数列は,という漸化式で定義された非常に有名な数列です。「 の一般項を…
「ヒルベルトの定理90」という有名な定理があります。定理の名称は,ヒルベルトの有名な報文(Zahlbericht)での定理番号から今日はこの定理について紹介します。定理:ヒルベルトの定理90 を有限次ガロア拡大としたとき,が成り立つ。
クンマー拡大についての記事を準備しているうちに,いくぶん理解が進んできました。 tsujimotter.hatenablog.com今日は,本題の「クロネッカー・ウェーバーの定理」から離れて「クンマー理論」について紹介します。クンマー理論については,しばらく前からず…
今日は「クンマー・ペアリング」についてのお話です。以下のシリーズの続きです。 tsujimotter.hatenablog.com
ご無沙汰しています。tsujimotterです。久しぶりに「クロネッカー・ウェーバーの定理と証明のあらすじ」シリーズの続きを書きたいと思います。 tsujimotter.hatenablog.com今日の主役は クンマー拡大 です。クンマー拡大とは,「巡回拡大」が「ベキ根の添加…
7/19から7/28の計9日間,Iwasawa2017という国際研究集会が東京大学にて開催されました.岩澤理論における世界的スーパースターが一堂に会し活発な議論が行われました. 実はtsujimotterもこっそり参加しておりました.感想やレポートはまたいずれ書きたいと…
ゼータ関数 の負の整数 における値には面白い性質があります。
今日は,私の大好きな数式から話を始めたいと思います。
今日は「岩澤理論」についてのお話をしたいと思います。2017年は,岩澤理論の創始者である岩澤健吉先生の 「生誕100周年」 の年にあたります*1。節目の年ということもあって Iwasawa2017 という国際会議が東京で開催されます。私もこの分野の数学に関心があ…
Aさん「私はBくんのことが大好き!」 Bくん「僕はその100倍好き!」 Aさん「じゃあ私はその1000倍好き!」 俺「y=100x,x=1000yだからx=y=0」 というネタがツイッターで流れてきたので、私も乗っかりたくなりました。普通に実数上で上記の式を考えてしまうと …
3/14 は「πの日」そして「数学の日」ですが、そんな数学にまつわる日に開催された #みらいけん数学デー というイベントに参加してきました!イベント詳細はこちら: www.shosen.co.jp日曜数学会のキグロさんが主催で、書泉グランデさん共催というものです。 …
類数1の虚二次体 は完全に決定されていて,虚二次体を としての 9 つだけであることが知られています。これがベイカー・スタークの定理です。今日はこの定理の「ベイカーによる証明」をご紹介したいと思います。
ゼータ関数強化月間 第2弾 として,今日は「デデキントのゼータ関数」を紹介したいと思います。デデキントのゼータ関数によって「類数」が求まる 「類数公式」 についてお話したいと思います。証明の流れが非常に面白いので,そのあたりを楽しんでいただけ…
最近「ゼータ関数」の話はこのブログで書いておらず,しばらくご無沙汰でした。最近学んでいる理論を調べているうちに「ゼータ熱」が再燃してきました。啓蒙書でお話程度に聞いていて「抽象的でよくわからないなぁ」と思っていた対象が,だんだんつかめてき…
2017/02/04: こちらの記事の計算に誤りがあることが発覚しました。今は手が離せないので,また後ほど訂正いたします・・・。2017/02/05: 上記の誤りについてですが,たしかに誤りであることが確認できました。どの箇所が誤っているかについて,末尾の「追記…
91 という数は、見た目が素数っぽくてつい間違えてしまうという「パッと見素数」 です。 motcho.hateblo.jp 素数と間違えやすいので、たとえば素数を使ったカードゲーム*1においては、間違えて悔しい思いをした方もいるかもしれません。「いやな数」と思われ…
といえば、ラマヌジャンの「タクシー数」のエピソードを思い出します。 という数に、ラマヌジャンが一瞬で「2通りの3乗数和の形で表せる最小の数」という意味を見出した、という話はよく知られていますね。 この式を導くポイントは、 という数が であるこ…
これまで「類体論」の勉強をしてきましたが,その集大成となる記事を書きたいと思います。本日扱いたいのは,およそ一年前に紹介した以下の問題です。 の形でかける素数はどのような法則を満たすか?その一年前の記事はこちら: tsujimotter.hatenablog.com
今日考えたい問題は という二次形式で書ける素数の法則です。実際,という法則が知られており, の素イデアル分解によって説明できます。これについて,以前の記事でまとめたことがありました。 tsujimotter.hatenablog.com一方で,上の記事では「たまたまそ…
4 で割って 1 あまる素数は,すべて2つの平方数の和でかけるという事実は,非常に有名なのでご存知の方も多いかと思います。私のブログでもたびたび取り上げてきました。フェルマーが発見したので,フェルマーの二平方定理(あるいは,二平方和の定理)とい…