tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

層の射は自然変換

先日、アフィンスキームについての3部記事を公開したところ、いろんな反応をいただきました。*1 tsujimotter.hatenablog.comいただいたコメントの一つに、実は「層の射は、実は自然変換である」ということを教えてくれるものがありました。tsujimotterはこ…

単項化定理と群コホモロジー

こんにちは。最近、群コホモロジーがマイブームのtsujimotterです。群コホモロジーといえば、以前の記事で群コホモロジーに関する定理「ヒルベルトの定理90」を使って、クンマー理論を導く話を書いたことがありました。 tsujimotter.hatenablog.com今回は ヒ…

ガロアに浸れる出版物・ウェブサイト紹介

今日は5/31というわけで、今年も「数学者エヴァリスト・ガロアの命日」がやってきました。「ガロアの命日」は私の携帯のカレンダーに登録されています。毎年5/31には、京大の数学教室で「ガロア祭」なるイベントも開催されているようですね。今日の16:30から…

33 = X^3 + Y^3 + Z^3 の整数解

今回のテーマは 33 という整数についてです。今朝、アフィンスキームについての重い記事を投稿したばかりですが、この記事では軽い感じでいきましょう。 を固定した自然数として、 なる方程式の整数解を考えたいと思います。

アフィンスキームとは何だろうか(3)

この記事は、シリーズ記事「アフィンスキームとは何だろうか」の第3回の記事です。第1回の記事: tsujimotter.hatenablog.com第2回の記事: tsujimotter.hatenablog.com 前回はついにアフィンスキームを定義しました。今日は、本シリーズの最後の記事とし…

アフィンスキームとは何だろうか(2)

この記事は、シリーズ記事「アフィンスキームとは何だろうか」の第2回の記事です。第1回の記事はこちら: tsujimotter.hatenablog.com 前回はアフィンスキームの定義に向けて、環のスペクトルとザリスキー位相という概念を紹介しました。位相が入ったので…

アフィンスキームとは何だろうか(1)

数論の勉強をしていく中で、スキーム理論の言葉で書かれた文章をたびたび見かけるようになり、スキームの基礎的な事項について理解したいと思うようになりました。代数幾何学の標準的な(?)教科書であるハーツホーン [文献1] などの本を読んで、基本的な部…

階乗数の間の関係式:10! = 6!7!

今日は が主役です。 は定義からですが、ここから を除いたを考えてみましょう。 のように置き換えるととできて、これは そのものです。したがって、表題の が成り立ちます。 これだけでも十分面白いのですが、実は という関係式には、こんな面白い特徴があ…

ゲーム理論で警備する:セキュリティゲーム

今年の3月に情報処理学会全国大会というところに行ってきまして、「ゲーム理論やメカニズムデザイン」についての招待講演を聞いてきました。以前からこの分野にはなんとなく関心があったのですが、この話がとても面白かったということもあり、関連する分野…

f(x) = 2x + 1 を mod 5 で繰り返し合成させるとどうなるか?

先日話題になった FF5の記事(1) や FF5の記事(2) の議論の中でとして なる数列について考えていました。 要するに、1次多項式 を考えて で を繰り返し合成させるとどうなるか? という問題を考察していたわけです。考えてみるとなかなか面白かったので、今日…

FF5のレベル5デスと整数論 (2)

前回の「FF5のレベル5デスと整数論」の記事では、多くの方々に読んでいただくことになり、たくさんの反響がありました。 「コラッツ予想に似てる」 「数式部分はよくわからなかったけど面白い」 「数学的な考察の勉強になった」 「授業の教材としても使える…

FF5のレベル5デスと整数論

Final Fantasy Ⅴ(以下、FF5)というゲームをご存知でしょうか?私が小学生ぐらいの頃に流行したロールプレイングゲームです。当時、私はFFの魅力がわからずプレイしたことすらなかったのですが、大人になってからその面白さに気づき、はまっています。今回…

タイヒミュラー指標

明けましておめでとうございます。新年最初の記事になりますが、もう既に新年から2ヶ月以上経っていることに驚きました。さて、本日あたりから「p進ゼータ関数」という本が店頭に並び始めました。p進ゼータ関数 久保田-レオポルドから岩澤理論へ (シリーズ…

ガロア表現とChebotarevの密度定理の使い方

好きな証明 Advent Calendar 2018 の13日目の記事です。 好きな証明 Advent Calendarということで,私が今年になってから勉強し始めた「ガロア表現」という分野の定理の中で,特に面白いと思った証明を紹介したいと思います。

パスカルの三角形にたくさん出てくる数: 3003

この記事は 日曜数学 Advent Calendar 2018 の 1日目の記事です。 今日から12月、今年も アドベントカレンダー の季節がやってきましたね!毎年12月になると、さまざまなテーマで持ち回りでブログ記事を書き合うお祭りがはじまります。それがアドベントカレ…

「月を入力すると日を返す多項式」と中国剰余定理

「月を入力すると日を返す多項式」の話が、Twitterのタイムライン上で話題になりました。 togetter.comどんな話題かというと、多項式 を以下のように定義したとき この に を代入すると、となり、月を入力すると日を返す多項式になっています!すごい! こん…

「インテジャーズ イン 仮面ライダービルド」関連記事紹介(tsujimotter編)

10/6に開催されたMathpower2018というイベントにおいて「インテジャーズ イン 仮面ライダービルド」という対談企画が開催されました。tsujimotterは、数のエンターテイナーの関真一朗さん(id:integers)と共演し、1時間半の講演をしてきました。 写真提供…

超幾何級数と超幾何定理

今日は 超幾何級数 のお話をしたいと思います。なお、 はポッホハマー記号といって、 で定義されます。より一般の複素数に対しては、あとで定義するガンマ関数によって としても定義できます。 超幾何級数は、tsujimotterのブログでも一度出てきたことがあり…

続:7は合同数(計算機編)

ここ最近「合同数」について勉強し、理解度が上がってきました。そこで、今日は合同数の具体的な計算をやってみたいと思います。今回は「7は合同数」の記事に出てきた「あの三角形」を計算で求めてみましょう。 tsujimotter.hatenablog.com SageMathについて…

リーチ格子とキャノンボール問題

24 にまつわる「リーチ格子」と「キャノンボール問題」の興味深い関係について紹介します。

合同数問題と保型形式(タネルの定理の証明の概略)

先週の日曜に梅崎さんが主宰する「数学について話す会」というイベントが開催されてtsujimotterも参加してきました。 数学について話す会 数学について話す会は「参加者全員が自分の好きな話をする」という、他ではあまりないタイプのイベントでした。参加者…

セルマー群と2-descent法

を代数体として 上定義された楕円曲線の -有理点の群をモーデル・ヴェイユ群 といいます。モーデル・ヴェイユの定理によって、 が有限生成であることが示されていますが、その自由部分の生成元の個数、すなわちランクを決定するのは一筋縄ではありません。今…

Knightの問題

今日は Knightの問題 を紹介します。Knightの問題は、ぱっと見はただの初等的な整数問題に見えるのですが、実は楕円曲線と関連する面白い問題です。

不思議な法則

ここに二つの2次無理数があります。 は、どちらも判別式が となる2次無理数となっています。 が2次無理数であるとは、 が既約な2次方程式の解であるということです。このとき、 を の判別式と言います。判別式が負であるような2次無理数を虚2次無理数と言い…

古典的モジュラー曲線 X_0(N)

今日は、モジュラー曲線の話の続きを書きます。前回の記事 では、フルモジュラー群 の定めるモジュラー曲線 を考えましたが、今回は 合同部分群 に対応するものを考えたいと思います。tsujimotterは、この合同部分群の定めるモジュラー曲線の話がしたくてこ…

モジュラー曲線 X(1)

今日から3回にわたって モジュラー曲線 をテーマとしたお話をしたいと思います。「モジュラー曲線?ああ、あれね」といった具合に、頭の中でイメージできるようになることを目標としたいと思います。以前から気になっていたトピックなのですが、先日日曜数…

虚数乗法論 (3):だから「虚数」「乗法」だったのか

虚数乗法シリーズ、第3回目です。今回は「虚数乗法」という呼び名に納得してもらえるような話をしたいと思います。記事を読み終わったみなさんが、タイトルのような感想を持つことを期待しています。シリーズの記事は、こちらのタグから検索ください。 tsuj…

格子 Z[√-1] に対応する楕円曲線

突然ですが、格子 に対応する楕円曲線の定義方程式を計算したくなってきました *1。参考記事はこちら: tsujimotter.hatenablog.com *1:本当は次回紹介予定の「虚数乗法」シリーズの記事に挿入しようと思っていたのですが、あまり本題と関係なかったので別記…

虚数乗法論 (2):楕円曲線の由来

虚数乗法シリーズ、第2回目です。シリーズの記事は、こちらのタグから検索ください。 tsujimotter.hatenablog.com 今日は、楕円曲線の基本的な事項についてお話します。この記事を読んだら、楕円曲線の由来が楕円関数からきていることが納得できるかと思い…

虚数乗法論 (1):イントロ

今回から数回に分けて 虚数乗法 について解説するシリーズをはじめたいと思います。その初回として「虚数乗法とは何なのか」「虚数乗法の何がおもしろいのか」について、かいつまんで紹介したいと思います。これを機に虚数乗法について興味を持っていただけ…