読者です 読者をやめる 読者になる 読者になる

tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

(小ネタ)恋する無限遠点

Aさん「私はBくんのことが大好き!」 Bくん「僕はその100倍好き!」 Aさん「じゃあ私はその1000倍好き!」 俺「y=100x,x=1000yだからx=y=0」 というネタがツイッターで流れてきたので、私も乗っかりたくなりました。普通に実数上で上記の式を考えてしまうと …

3月14日 #みらいけん数学デー で数学書限定ビブリオバトルしてきた

3/14 は「πの日」そして「数学の日」ですが、そんな数学にまつわる日に開催された #みらいけん数学デー というイベントに参加してきました!イベント詳細はこちら: www.shosen.co.jp日曜数学会のキグロさんが主催で、書泉グランデさん共催というものです。 …

ベイカーの定理と類数1の虚二次体の決定

類数1の虚二次体 は完全に決定されていて,虚二次体を としての 9 つだけであることが知られています。これがベイカー・スタークの定理です。今日はこの定理の「ベイカーによる証明」をご紹介したいと思います。

類数公式とデデキントのゼータ関数

ゼータ関数強化月間 第2弾 として,今日は「デデキントのゼータ関数」を紹介したいと思います。デデキントのゼータ関数によって「類数」が求まる 「類数公式」 についてお話したいと思います。証明の流れが非常に面白いので,そのあたりを楽しんでいただけ…

ゼータ関数の行列式表示

最近「ゼータ関数」の話はこのブログで書いておらず,しばらくご無沙汰でした。最近学んでいる理論を調べているうちに「ゼータ熱」が再燃してきました。啓蒙書でお話程度に聞いていて「抽象的でよくわからないなぁ」と思っていた対象が,だんだんつかめてき…

「57 は 3 で割れ切れる」の別証明(したかった)

2017/02/04: こちらの記事の計算に誤りがあることが発覚しました。今は手が離せないので,また後ほど訂正いたします・・・。2017/02/05: 上記の誤りについてですが,たしかに誤りであることが確認できました。どの箇所が誤っているかについて,末尾の「追記…

パッと見素数 "91" を素数判定に活用する

91 という数は、見た目が素数っぽくてつい間違えてしまうという「パッと見素数」 です。 motcho.hateblo.jp 素数と間違えやすいので、たとえば素数を使ったカードゲーム*1においては、間違えて悔しい思いをした方もいるかもしれません。「いやな数」と思われ…

1728とラマヌジャンと線形代数

といえば、ラマヌジャンの「タクシー数」のエピソードを思い出します。 という数に、ラマヌジャンが一瞬で「2通りの3乗数和の形で表せる最小の数」という意味を見出した、という話はよく知られていますね。 この式を導くポイントは、 という数が であるこ…

続・XX + XY + 6YY の形で表せる素数

これまで「類体論」の勉強をしてきましたが,その集大成となる記事を書きたいと思います。本日扱いたいのは,およそ一年前に紹介した以下の問題です。 の形でかける素数はどのような法則を満たすか?その一年前の記事はこちら: tsujimotter.hatenablog.com

ガウスの種の理論 (Genus Theory)

今日考えたい問題は という二次形式で書ける素数の法則です。実際,という法則が知られており, の素イデアル分解によって説明できます。これについて,以前の記事でまとめたことがありました。 tsujimotter.hatenablog.com一方で,上の記事では「たまたまそ…

163とドカベン素数

4 で割って 1 あまる素数は,すべて2つの平方数の和でかけるという事実は,非常に有名なのでご存知の方も多いかと思います。私のブログでもたびたび取り上げてきました。フェルマーが発見したので,フェルマーの二平方定理(あるいは,二平方和の定理)とい…

2017は非正則素数

今年は西暦 2017 年ですが,2017 は素数 ということで各所で盛り上がったことと思います。実は,2017は単に素数なだけではなく,非正則素数 という重要な素数でもあるのです。今日はそのことを紹介します。概要: さっき発見したんですが 2017 は 123 番目の…

二次体の分解法則と平方剰余の相互法則

前回に引き続き類体論に関するお話です。続きものなので,ぜひ以下の記事を読んでからきてください。 tsujimotter.hatenablog.com今日の主役は 二次体 です。二次体とは,平方因子を持たない に対して の形で与えられる の二次拡大体のことです。一見簡単そ…

円分体の類体論の復習

tsujimotter.hatenablog.com 以上の記事では,整数論にガロア理論を適用させ,素イデアルの分解法則を見出す「ヒルベルトの理論」の枠組みを紹介し,その系として円分体の分解法則を導きました。上の記事から半年以上経っているので,円分体の類体論を復習し…

素数ℓはℓ次の円分体で完全分岐する

しばらく類体論周辺の話を書きたいと思っています。今日は後の記事のための補助的な内容を書きたいと思います。今日のテーマは円分体の分岐についての定理。

2017の素因数分解がつくる多角形

この記事は 日曜数学 Advent Calendar 2016 の 25 日目(最終日)の記事です。 アドベントカレンダー最終日です!日曜数学アドベントカレンダーに参加してくださったみなさま,本当にありがとうございました。さまざまな分野の楽しいお話が飛び出して,ワク…

Amazon dash ボタンで馬場君に焼きそばパンを買いに行ってもらう

これは馬場君に焼きそばパンを買いに行ってもらうしかない。 そう思ったのでした。

グロタンカットをしないという選択

この記事は、素数大富豪アドベントカレンダー 2016 の4日目の記事です。 昨日は、みうらさんによる熱い togetter まとめでした!みなさん、読みましたか?読んでいない方はぜひ! togetter.com 素数大富豪、最近流行っていますね。素数が好きな数学ファンは…

ガロアに会いに行ってきました:聖地巡礼弾丸ツアー

この記事は 日曜数学 Advent Calendar 2016 の 1日目の記事です。 12月ですね。アドベントカレンダーの季節がやってきました。毎年、12月になると、さまざまなテーマで持ち回りでブログ記事を書き合うお祭りがはじまります。私は、2年連続で「数学」に…

サイエンスアゴラ2016で日曜数学について発表してきました!

11月5日、6日は、サイエンスアゴラ2016に「日曜数学会」として参加してきました。11/5(土)11/6(日)の二日間、サイエンスアゴラで #日曜数学会 が出展します。ロングverの日曜数学会を行う予定で、私は両日11時から登壇します。都立産業技術研究センターM2階…

サイエンスアゴラ2016 数学関連企画リスト

昨日 11/4(木) から 11/6(日)より、サイエンスアゴラというイベントが開催されます。お台場で開催される、科学コミュニケーションの見本市のような大規模なイベントです。tsujimotter も今年は「日曜数学会」として参加します。 www.jst.go.jp以下のページに…

29 の倍数判定法

こんにちは。最近数学をする時間がとれなくてもやっとしているtsujimotterです*1。ちょっとした気晴らしに小ネタを書きたいと思います。 *1:「数学する時間がとれない」というより「数学はしているけど,ブログを書いている暇がない」かもしれません。今,書…

日曜数学者向けのイベント備忘録(2016年秋開催)

秋といえば数学の秋!この秋は、あまりにもアマチュア数学関連のイベントが目白押しだったので、ただただ備忘録的にまとめてみました! (私の知っている限りなので「このイベントが足りないよっ」とかご要望があれば気軽に @tsujimotter に言ってくださいね…

Wieferich 商を計算する

こんばんは。今日は簡単な記事を書きたいと思います。 経緯 インテジャーズさんの以下の記事: integers.hatenablog.comでこんなことが書かれていました。 と が実際にWieferich素数であることを証明しようと思うとき、愚直にコンピュータで を計算して実際…

8 と 9 の黄金ペア:カタラン予想

本日は 8 月 9 日ということで,8 と 9 のペアで作られる数学のお話をしましょう。 という数は で3乗数, という数は だから平方数ですね。これらの数の差は なのでが成り立ちます。すなわち,「べき乗数 ひく べき乗数」が1となっているわけです。ここで…

接吻数問題 と 24 次元リーチ格子

「接吻数問題」という数学の問題があります.なんとも変な名前の問題ですが今日はそのお話です.実は今回のテーマは,私が1年半前に書いた 691 の記事 に深く関連しています.私のブログでしばしば取り上げている「ラマヌジャンのデルタ」や「保型形式」と…

巷で話題のカーマイケル数・カーマイケルの定理について

最近こんなニュースが話題になっているようです。中国人の一般男性が「カーマイケル数」を導出する方法を再発見した、とのこと。 news.livedoor.com一部引用すると 河南省の青年・余建春さんは短大卒でここ数年は、アルバイトで生計を立てている。そんな余さ…

群論におけるフェルマーの小定理

ご無沙汰しております。約3ヶ月ぶりの投稿です。4月より職場がかわったのですが、仕事に慣れるまでに期間がかかってしまい、ブログの更新が滞っておりました。その間も日曜数学は楽しく続けておりましたので、少しずつブログの方でも公開していけたらと思…

自由研究:「tsujimotter の 29 予想」が解決しました!

以前、 という素数に関する以下の記事を書いたのを覚えていますか。 tsujimotter.hatenablog.com この問題について、twitter で以下のような投稿をしたのです。【29】「x^4+y^4+z^4 は x=y=z=p を除いて p で割り切れない」を満たす素数 p は 5, 29 だけ…ら…

「フェルマーゲーム」の拡張性について

腹痛のためベッドの中で引きこもっていたら、4n+1型, 4n+3型の素数をそれぞれ列挙し合う新しいゲーム「フェルマーゲーム」が生まれました!腹痛もたまには良いことしますね。笑 ゲームのルールは、にせいさんがブログでまとめてくれました。nisei.hatenablog…

素イデアル分解法則を考える(ヒルベルトの理論とフロベニウス自己同型)

今日は私がまさに今現在勉強している「素イデアルの分解法則」についてお話ししたいと思います。素イデアルの分解については,これまでの記事でも「フェルマーの二平方定理」やその関連する法則について触れてきましたので,ずっと興味はあったのです。しか…

勘違いしやすい(かもしれない)素数の無限性

前回 は「素数ばかり生成される多項式」についてお話ししました。今回は「素数を無限に生成できる(かもしれない?)多項式」についてのお話です。それでは、まず以下の問題について考えてみてください。あなたは即答できるでしょうか。 とかける素数 は無限…

オイラーの素数生成多項式の秘密

今日はオイラーが発見した, という多項式についてお話したいと思います。 ある特別な に対して,多項式の に整数 を入れていくと,「素数」が次から次へとたくさん出てくるのです。まるで 「魔法の多項式」 です。これだけでも十分面白いのですが,なんとこ…

4n+3型, 6n+5型, 8n+5型素数の無限性

少し前に、私の周囲で「"" 型素数が無限に存在することを初等的に証明できるか?」という議論が流行っていました。私が追っていた限りにおいては、ちょっとずつ穴があって証明は叶わなかったようです。私は、てっきりこの手の問題、すなわち 型素数の無限性…

「高校のときにどんな勉強をしていましたか?」についての回答

きっかけは、twitter であったこちらの一件。そういえば「高校のときにどんな勉強をしていましたか?」みたいな質問をしてくれた方がいたんですが、すっかり返信忘れておりました。ようやく思い出して返信しようと思ったのだけれど、通知のはるか彼方にいっ…

7は合同数

1つ前の記事で「合同数」の話が出たので,合同数についてのもう一つの話題を。 復習しておくと,合同数とは「すべての辺の長さが有理数であるような直角三角形の面積になる数」のことです。図で表すとわかりやすいですね。

リュカのキャノンボール問題

面白い問題を見つけたので紹介します!「エドゥアール・リュカ」という名前を聞いたことがあるでしょうか。リュカ数列や,メルセンヌ素数の「リュカ・レーマーテスト」で有名なあの「リュカ」です。 彼は数学にまつわるパズルのような問題をたくさん紹介した…

ラングレーの問題についにトドメが刺されたらしい!

今日はいつもと趣向を変えて、今年私の耳に届いた数学ニュースを2つご紹介したいと思います。2016年1月23日追記:本記事内には、内容を取り違えている部分があることが指摘されています。現在修正箇所を調査中です。正確な内容につきましては、引用されてい…

原始根の数のかぞえかた

以前、第2回プログラマのための勉強会 というところで「時計の世界の整数論」という発表をしました。「時計の世界の整数論」は, が素数のときの 上での整数論についてまとめたものです。その中で以下の定理がありました。 図は, として におけるべき乗を…

2015 年の「日曜数学」活動を振り返る

2016 年も 10 日ほど経ってしまいましたが、2015 年の活動を振り返る記事を書いてみたいと思います。主に自分向けのまとめなので、ずいぶん長い記事になってしまっていますが、よろしければお付き合いください。2015 年の tsujimotter は「プログラマのため…

FLTとクンマーとイデアル類群

2016年が始まりました。日曜数学者の tsujimotter は、今年も楽しく数学をしていきたいと思っています。どうぞよろしくおつきあいください。 というわけで、新年一発目の数学の話を。今日の目標は、以下の命題の一般的な証明方法についての解説です。 命題:…

#日曜数学 の多様性を感じた25日間:日曜数学 Advent Calendar 2015 まとめ

この記事は 日曜数学 Advent Calendar 2015 最終日 の記事です。(24日目:物智 — 2015年の日曜数学活動まとめ+神に迫る小咄) 日曜数学 Advent Calendar 無事埋まりました!!!みなさんありがとうございます!!! Advent Calendar へのリンクはこちらです…

空の見えないセカイ

この記事は Math Advent Calendar 2015 の 23日目の記事です。(22日目:実数の実体) 昨日の記事は、さわらさん(@sawara0804)による「実数の実体」というお話でした。私の琴線にヒットしそうなお話で大変興味があるのですが、すみませんまだ読めていませ…

「3の100乗を19で割ったあまりは?」を4通りの方法で計算する

この記事は 日曜数学 Advent Calendar 2015 の 8日目の記事です。(7日目:京大特色入試, コインの問題を解く | kinebuchitomo) ニコニコ動画の「数学」タグを検索するのが日課の日曜数学者 tsujimotter です。「数学」で検索すると、本当にいろいろな動画…

日曜数学ってなんだろう

この記事は 日曜数学 Advent Calendar 2015 の 1日目の記事です。 今年もこの季節がやってまいりました! そう、アドベントカレンダー です!アドベントカレンダーといえば、昨年は「明日話したくなる数学豆知識 Advent Calendar 2014」というテーマのものを…

オイラーの五角数定理 と ヤコビの三重積

小学校の頃に算数で「おはじき」を並べる授業があったのを覚えているでしょうか。みなさんきっとやったことがあると思いますが,おはじきを正三角形の形に並べることができますね。最初は1個,次は3個,その次は6個,そして10個。10個では「ボウリン…

xx + 27yy 型の素数 と オイラーの五角数定理

これまでこのブログではという二次形式で表すことのできる素数に想いを巡らせてきました。 のときには,それぞれの二次形式で表すことができる素数の必要十分条件が完全に分かっています。このブログでも数回にわたって解説してきました。 一般に,「多くの…

自由研究:アンモナイトの対数螺線

8月は重たい記事ばかりかいてしまいましたが、今日は比較的さらっとした話をご紹介します。 2015年7月から開催の国立科学博物館の特別展「生命大躍進展」に行ってきました!生命大躍進展 人類誕生に至る40億年の壮大な生命進化の展覧会www.seimei-ten.jp 地…

二次体 Q(√-5) のイデアル類群と xx + 5yy 型の二次形式

関連記事: tsujimotter.hatenablog.com 「イデアル類群は,単項イデアル整域からどれだけ離れているかを測る "ものさし" である」 というような文章は,イデアル類群を簡単に説明するためによく用いられる解説ですが,こんな説明を聞いても「はぁ?何言って…

Z[√-5] のイデアルについて

二次体 上の整数環 を考えたときに,その代数的整数に対して「素因数分解の一意性は必ずしも保証されない」 という問題は,代数的整数論のイントロダクションとして重要なトピックだと思います。具体的には, のときには, という数が2通りに素因数分解され…