tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

ゼータ関数

コーツ・ワイルズの定理(のあらすじ)

7/19から7/28の計9日間,Iwasawa2017という国際研究集会が東京大学にて開催されました.岩澤理論における世界的スーパースターが一堂に会し活発な議論が行われました. 実はtsujimotterもこっそり参加しておりました.感想やレポートはまたいずれ書きたいと…

p進L関数とクンマーの合同式

ゼータ関数 の負の整数 における値には面白い性質があります。

類数公式とデデキントのゼータ関数

ゼータ関数強化月間 第2弾 として,今日は「デデキントのゼータ関数」を紹介したいと思います。デデキントのゼータ関数によって「類数」が求まる 「類数公式」 についてお話したいと思います。証明の流れが非常に面白いので,そのあたりを楽しんでいただけ…

ゼータ関数の行列式表示

最近「ゼータ関数」の話はこのブログで書いておらず,しばらくご無沙汰でした。最近学んでいる理論を調べているうちに「ゼータ熱」が再燃してきました。啓蒙書でお話程度に聞いていて「抽象的でよくわからないなぁ」と思っていた対象が,だんだんつかめてき…

「食べられるゼータ関数」を作ってみた

tsujimotter は,昨日 5 月 9 日に 歳の誕生日を迎えました。 は, と と を素因数に持つ最小の正の整数です。ちなみに,5 月 9 日の という数字は,単に「素数」というだけでなく,その中でも特に珍しい「非正則素数」だったりして,結構気に入っています。…

「触れるゼータ関数」ついに販売開始しました!

ニコニコ学会β 第8回シンポジウムにて,tsujimotter が披露し好評を博した「触れるゼータ関数」がついに発売! 今まで触れることができなかった「ゼータ関数」があなたの手に! 冒頭からテンションの高い文章となっていますが,ついにあのゼータ関数を,皆様…

#ニコニコ学会 数学セッションに出演しました

以下の記事でも告知していましたが、ニコニコ学会 第8回シンポジウム の数学セッションからオファーをいただいて講演をしてきました。無事終了しましたので、レポートとしてまとめたいと思います。ニコニコ学会β 第8回シンポジウム 数学セッションに出演し…

691 に心惹かれる理由

日曜数学者と名乗る前は「数のエンターテイナー」と名乗っていた tsujimotter です。久しく数のエンターテイナー成分がなかったので、ひさびさに「数についての雑学」をお話しようと思います。タイトルにある "691" という数は、単なる素数に見えるかもしれ…

「第1回プログラマのための数学勉強会」で素数の話をしてきました

このブログでもちょくちょく登場している id:taketo1024 さん(以下,佐野さん*1)主催の「プログラマのための数学勉強会」で発表をしてきました。開催日は 1/30 だったので,随分ご報告が遅れてしまいましが,今日は tsujimotter の発表の振り返りを中心に…

リーマンのゼータ関数で遊び倒そう (Ruby編)

今日のテーマは「リーマンのゼータ関数」です。リーマンのゼータ関数(以下,ゼータ関数)は,複素関数と呼ばれるタイプの関数です。複素数を変数にとって,複素数を関数値として返すので複素関数というのです。ゼータ関数は以下の式で定義されます。ゼータ…

ラマヌジャンの L 関数 と 二次のオイラー積

このところ暗号系の記事が続きましたが、今回は暗号とはまったくありません。この記事では、次のオイラー積を求めたいと思います。 左辺の級数は「ラマヌジャンの L関数*1」と呼ばれています。ラマヌジャンとはもちろん、インドが産んだ奇才、シュリニバーサ…

ディリクレの算術級数定理の証明(4n+1型の場合)

これらの数は で割って 余る素数です。このような形の素数のことを「 型の素数」と呼びますが、果たしてそのような素数は無限に存在するのでしょうか。この問いに答えるのが「ディリクレの算術級数定理」です。 ディリクレの算術級数定理: を正の整数とし,…

リーマンの素数公式の可視化アプリがパワーアップしました

「花の金曜日」ということで、前々から懸案事項だった数学アプリの整備を再開しました。言わば、「一人数学ハッカソン」です。今回のテーマは「リーマンの素数公式」について。

ジーゲルのZ関数を数値計算する

リーマン予想とかリーマンの素数公式とかの文献を調べていくと「ゼータ関数の零点を求めたいな」って気分になりますよね。下記の Andrew Odlyzko のページに行けば、零点の生データを 100,000 個まで得ることができます。 Andrew Odlyzko: Tables of zeros o…

リーマンの素数公式を可視化する

三行でまとめると 《リーマンの素数公式》 を可視化するブラウザアプリを作りました。面白いから使ってみてね。解説もあるよ(以下ずっと続きます)。

ガウスの素数定理

ガウスの素数定理とは、ある数が 素数である確率 についての定理です。その定理は、自然対数を使って次のように表せます。 ガウスの素数定理: 十分大きな整数 が素数である確率 は次のように近似できる。 今回の記事では、この素数定理とその証明の概略を解…

素数が無数にあることのオイラー積を使った証明

《関連記事》 ゼータ関数のオイラー積 - tsujimotterのノートブック はるか昔、ユークリッドによって「素数は無数に存在する」ことは証明されていました。ここでは、ゼータ関数のオイラー積という比較的近代的な手法を使って、上記の定理を証明したいと思い…

ディリクレ級数のオイラー積

前作:ゼータ関数のオイラー積 - tsujimotterのノートブック ディリクレ級数とは、 という数論的関数を用いて、次のように定義されます。 数論的関数という言葉は、なじみが薄いかもしれません。数論的関数とは引数に整数をとる関数のことです。関数が整数で…

ゼータ関数のオイラー積

図:レオンハルト・オイラー(1707 - 1783) オイラー積とは レオンハルト・オイラーといえば世界一美しい公式と呼ばれる「オイラーの公式」が有名ですが、私が一番好きなのは次のオイラー積と呼ばれる公式です。 オイラー積(完全版) ただし、右辺の積記号…

4n+1型の素数とディリクレの算術級数定理

5, 13, 17, 29, 37, 41, 53, 57, ... これらはすべて、4で割ると1余る数です。しかも、自分自身と1以外の数で割ることが出来ないので素数です。このような数を4n+1型の素数と呼びます。このような素数に対しては、次のような疑問が沸いてくるでしょう。 果た…